Instance information
The relative permittivity of a material under given conditions reflects the extent to which it concentrates electrostatic lines of flux. Technically, it is the ratio of the amount of electrical energy stored in a material by an applied voltage, relative to that stored in a vacuum. Similarly, it is also the ratio of the capacitance of a capacitor using that material as a dielectric, compared to a similar capacitor which has a vacuum as its dielectric. The relative permittivity of a material for a frequency of zero is known as its static relative permittivity or as its dielectric constant. Other terms used for the zero frequency relative permittivity include relative dielectric constant and static dielectric constant. While they remain very common, these terms are ambiguous and have been deprecated by some standards organizations.[5][6] The reason for the potential ambiguity is twofold. First, some older authors used "dielectric constant" or "absolute dielectric constant" for the absolute permittivity Relative permittivity is typically denoted as \varepsilon_{r}(\omega) = \frac{\varepsilon(\omega)}{\varepsilon_{0}}, where Relative permittivity is a dimensionless number that is in general complex. The imaginary portion of the permittivity corresponds to a phase shift of the polarization P relative to E and leads to the attenuation of electromagnetic waves passing through the medium. By definition, the linear relative permittivity of vacuum is equal to 1[8], that is The relative permittivity of a medium is related to its electric susceptibility, e, as source: http://en.wikipedia.org/wiki/Dielectric_constant