This is just here as a test because I lose it

Term information

PMID

17982158

17519275

definition

(mean velocity equation) The purpose of the currently accepted equations by Hemeon and the American Conference of Governmental Industrial Hygienists (ACGIH) is to estimate the plume volumetric flow (Q) [The volumetric flow above a heated source is defined as the product of the plume mean velocity and area (ACGIH, 1998; Hemeon, 1999).] at which heat and fine particle effluents are being introduced to the face of the engineering control (i.e. receiving hood). Determining the plume flow is of critical interest for two reasons: (1) it must provide adequate control of the effluent to prevent spillage back into the workplace air; (2) it should be calculated as accurately as possible to prevent overventilating the process, as this wastes conditioned indoor air. Accuracy of the flow estimation is important, as results from a laboratory study to determine the accuracy of Hemeon's flow equation indicated that this equation overestimates the flow above heated sources leading to excess process ventilation (Siebert and Fraser, 1973). source: JOHN L. McKERNAN, MICHAEL J. ELLENBECKER, CHRISTINA A. HOLCROFT and MARTIN R. PETERSEN: Evaluation of a Proposed Velocity Equation for Improved Exothermic Process Control. Ann Occup Hyg (2007) 51 (4): 357-369. doi: 10.1093/annhyg/mem016 - First published online: May 22, 2007 Uquer_A (m*s^-1) = (8.50 x 10^-2) / (H_A^0.25) * A_T^0.33 * Delta T^0.42 AT = Area of top surface of body emitting heat; (RS)2 (m2) T = Excess temperature; (Ts (K) http://annhyg.oxfordjournals.org/content/51/4/357.long

exact synonym

American Conference of Governmental Industrial Hygienists equation

has enhanced presentationMathML

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <mrow> <mrow> <msub> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mi>A</mi> </msub> <mo>&InvisibleTimes;</mo> <mfenced close=")" open="("> <mrow> <mi>m</mi> <mo>&times;</mo> <msup> <mi>s</mi> <mn>-1</mn> </msup> </mrow> </mfenced> </mrow> <mo>=</mo> <mrow> <mrow> <mfenced close=")" open="("> <mrow> <mn>8.50</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mn>-2</mn> </msup> </mrow> </mfenced> <mo>/</mo> <mfenced close=")" open="("> <msubsup> <mi>H</mi> <mi>A</mi> <mn>0.25</mn> </msubsup> </mfenced> </mrow> <mo>&times;</mo> <msubsup> <mi>A</mi> <mi>T</mi> <mn>0.33</mn> </msubsup> <mo>&times;</mo> <mrow> <mi>&Delta;</mi> <mo>&InvisibleTimes;</mo> <msup> <mi>T</mi> <mn>0.42</mn> </msup> </mrow> </mrow> </mrow> </math>

has latex math

\overline U_A (m \times s^{-1}) = (8.50 \times 10^{-2}) / (H_A^0.25) \times A_T^0.33 \times \Delta T^0.42

has raw presentationMathML

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <semantics> <mrow> <msub> <mover accent="true"> <mi>U</mi> <mo>¯</mo> </mover> <mi>A</mi> </msub> <mfenced close=")" open="("> <mrow> <mi>m</mi> <mo>&times;</mo> <msup> <mi>s</mi> <mn>-1</mn> </msup> </mrow> </mfenced> <mo>=</mo> <mfenced close=")" open="("> <mrow> <mn>8.50</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mn>-2</mn> </msup> </mrow> </mfenced> <mo>/</mo> <mfenced close=")" open="("> <msubsup> <mi>H</mi> <mi>A</mi> <mn>0.25</mn> </msubsup> </mfenced> <mo>&times;</mo> <msubsup> <mi>A</mi> <mi>T</mi> <mn>0.33</mn> </msubsup> <mo>&times;</mo> <mi>&Delta;</mi> <msup> <mi>T</mi> <mn>0.42</mn> </msup> </mrow> <annotation encoding="SnuggleTeX">\[ \overline U_A (m \times s^{-1}) = (8.50 \times 10^{-2}) / (H_A^0.25) \times A_T^0.33 \times \Delta T^0.42 \]</annotation> </semantics> </math>

Term relations

Subclass of: