Term information
The Gorlin equation in an equation used to calculate the valve area. "The Gorlin equation states that the aortic valve area is equal to the flow through the aortic valve during ventricular systole divided by the systolic pressure gradient across the valve times a constant. The flow across the aortic valve is calculated by taking the cardiac output (measured in liters/minute) and dividing it by the heart rate (to give output per cardiac cycle) and then dividing it by the systolic ejection period measured in seconds per beat (to give flow per ventricular contraction). <math>Aortic\ Valve\ Area=\frac{Cardiac\ Output}{Heart\ rate \cdot Systolic\ ejection\ period\ \cdot 44.3 \cdot \sqrt{Gradient}}<math> The Gorlin equation is related to flow across the valve. Because of this, the valve area may be erroneously calculated as stenotic if the flow across the valve is low (ie: if the cardiac output is low). The measurement of the true gradient is accomplished by temporarily increasing the cardiac output by the infusion of positive inotropic agents, such as dobutamine. " source: http://www.wordiq.com/definition/Aortic_stenosis#The_Gorlin_equation
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <apply> <eq/> <apply> <times/> <ci>A</ci> <ci>o</ci> <ci>r</ci> <ci>t</ci> <imaginaryi/> <ci>c</ci> <ci>V</ci> <ci>a</ci> <ci>l</ci> <ci>v</ci> <exponentiale/> <ci>A</ci> <ci>r</ci> <exponentiale/> <ci>a</ci> </apply> <apply> <divide/> <apply> <times/> <ci>C</ci> <ci>a</ci> <ci>r</ci> <ci>d</ci> <imaginaryi/> <ci>a</ci> <ci>c</ci> <ci> </ci> <ci>O</ci> <ci>u</ci> <ci>t</ci> <ci>p</ci> <ci>u</ci> <ci>t</ci> </apply> <apply> <times/> <apply> <times/> <ci>H</ci> <exponentiale/> <ci>a</ci> <ci>r</ci> <ci>t</ci> <ci> </ci> <ci>r</ci> <ci>a</ci> <ci>t</ci> <exponentiale/> </apply> <apply> <times/> <ci>S</ci> <ci>y</ci> <ci>s</ci> <ci>t</ci> <ci>o</ci> <ci>l</ci> <imaginaryi/> <ci>c</ci> <ci> </ci> <exponentiale/> <ci>j</ci> <exponentiale/> <ci>c</ci> <ci>t</ci> <imaginaryi/> <ci>o</ci> <ci>n</ci> <ci> </ci> <ci>p</ci> <exponentiale/> <ci>r</ci> <imaginaryi/> <ci>o</ci> <ci>d</ci> <ci> </ci> </apply> <cn>44.3</cn> <apply> <root/> <apply> <times/> <ci>G</ci> <ci>r</ci> <ci>a</ci> <ci>d</ci> <imaginaryi/> <exponentiale/> <ci>n</ci> <ci>t</ci> </apply> </apply> </apply> </apply> </apply> </math>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <mrow> <mrow> <mi>A</mi> <mo>⁢</mo> <mi>o</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>c</mi> <mo>⁢</mo> <mi>V</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>l</mi> <mo>⁢</mo> <mi>v</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>A</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>a</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>C</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>d</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>c</mi> <mo>⁢</mo> <mi> </mi> <mo>⁢</mo> <mi>O</mi> <mo>⁢</mo> <mi>u</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi>p</mi> <mo>⁢</mo> <mi>u</mi> <mo>⁢</mo> <mi>t</mi> </mrow> <mrow> <mrow> <mi>H</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi> </mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi>e</mi> </mrow> <mo>⋅</mo> <mrow> <mi>S</mi> <mo>⁢</mo> <mi>y</mi> <mo>⁢</mo> <mi>s</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi>o</mi> <mo>⁢</mo> <mi>l</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>c</mi> <mo>⁢</mo> <mi> </mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>j</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>c</mi> <mo>⁢</mo> <mi>t</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>o</mi> <mo>⁢</mo> <mi>n</mi> <mo>⁢</mo> <mi> </mi> <mo>⁢</mo> <mi>p</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>o</mi> <mo>⁢</mo> <mi>d</mi> <mo>⁢</mo> <mi> </mi> </mrow> <mo>⋅</mo> <mn>44.3</mn> <mo>⋅</mo> <msqrt> <mi>G</mi> <mo>⁢</mo> <mi>r</mi> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>d</mi> <mo>⁢</mo> <mi>i</mi> <mo>⁢</mo> <mi>e</mi> <mo>⁢</mo> <mi>n</mi> <mo>⁢</mo> <mi>t</mi> </msqrt> </mrow> </mfrac> </mrow> </math>
{Aortic Valve Area}=\frac{Cardiac\ Output}{Heart\ rate \cdot Systolic\ ejection\ period\ \cdot 44.3 \cdot \sqrt{Gradient}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <semantics> <mrow> <mrow> <mi>A</mi> <mi>o</mi> <mi>r</mi> <mi>t</mi> <mi>i</mi> <mi>c</mi> <mi>V</mi> <mi>a</mi> <mi>l</mi> <mi>v</mi> <mi>e</mi> <mi>A</mi> <mi>r</mi> <mi>e</mi> <mi>a</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>C</mi> <mi>a</mi> <mi>r</mi> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>c</mi> <mi> </mi> <mi>O</mi> <mi>u</mi> <mi>t</mi> <mi>p</mi> <mi>u</mi> <mi>t</mi> </mrow> <mrow> <mi>H</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> <mi> </mi> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>e</mi> <mo>⋅</mo> <mi>S</mi> <mi>y</mi> <mi>s</mi> <mi>t</mi> <mi>o</mi> <mi>l</mi> <mi>i</mi> <mi>c</mi> <mi> </mi> <mi>e</mi> <mi>j</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mi> </mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>d</mi> <mi> </mi> <mo>⋅</mo> <mn>44.3</mn> <mo>⋅</mo> <msqrt> <mrow> <mi>G</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> <mi>i</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msqrt> </mrow> </mfrac> </mrow> <annotation encoding="SnuggleTeX">\[ {Aortic Valve Area}=\frac{Cardiac\ Output}{Heart\ rate \cdot Systolic\ ejection\ period\ \cdot 44.3 \cdot \sqrt{Gradient}} \]</annotation> </semantics> </math>
Term relations
- correlation equation
- has_variable some (
variable and
is_about some (
duration quality of a process and
quality_of some process)) - has_variable some (
variable and
is_about some (
heart rate and
quality_of some anatomical part)) - has_variable some (
variable and
is_about some (
area and
quality_of some anatomical part)) - has_variable some (
variable and
is_about some (
fluid flow rate and
quality_of some anatomical part))