Term information
The partial differential equation which states that the Laplacian of an unknown function is equal to a given function. source: http://www.answers.com/topic/poisson-s-equation --- In mathematics, Poisson's equation is an partial differential equation of elliptic type with broad utility in electrostatics, mechanical engineering and theoretical physics. It is named after the French mathematician, geometer and physicist Simon-Denis Poisson. The Poisson equation is \Delta\varphi=f where is the Laplace operator, and f and {\nabla}^2 \varphi = f. source: http://en.wikipedia.org/wiki/Poisson_equation
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <apply> <eq/> <apply> <times/> <ci>Δ</ci> <ci>ϕ</ci> </apply> <ci type="function">f</ci> </apply> </math>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <mrow> <mrow> <mi>Δ</mi> <mo>⁢</mo> <mi>ϕ</mi> </mrow> <mo>=</mo> <mi>f</mi> </mrow> </math>
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <semantics> <mrow> <mi>Δ</mi> <mi>ϕ</mi> <mo>=</mo> <mi>f</mi> </mrow> <annotation encoding="SnuggleTeX">\[ \Delta\varphi=f \]</annotation> </semantics> </math>