This is just here as a test because I lose it

Term information

definition

It is one of the most popular equations used for description of wave processes in active and dissipative environments. It is also one of the simplest equations used for numerical simulation of turbulence. source: http://www.primat.mephi.ru/wiki/ow.asp?Kuramoto-Sivashinsky_equation

has enhanced presentationMathML

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <mrow> <mrow> <msub> <mi>u</mi> <mi>t</mi> </msub> <mo>+</mo> <mrow> <mi>u</mi> <mo>&InvisibleTimes;</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> <mo>+</mo> <mrow> <mi>&alpha;</mi> <mo>&InvisibleTimes;</mo> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> </mrow> </msub> </mrow> <mo>+</mo> <mrow> <mi>&beta;</mi> <mo>&InvisibleTimes;</mo> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> </mrow> </msub> </mrow> <mo>+</mo> <mrow> <mi>&gamma;</mi> <mo>&InvisibleTimes;</mo> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> <mo>&InvisibleTimes;</mo> <mi>x</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </math>

has latex math

u_t +u u_x +\alpha u_{xx} +\beta u_{xxx} +\gamma u_{xxxx} =0

has raw presentationMathML

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> <semantics> <mrow> <msub> <mi>u</mi> <mi>t</mi> </msub> <mo>+</mo> <mi>u</mi> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&alpha;</mi> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>&beta;</mi> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>&gamma;</mi> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mi>x</mi> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <annotation encoding="SnuggleTeX">\[ u_t +u u_x +\alpha u_{xx} +\beta u_{xxx} +\gamma u_{xxxx} =0 \]</annotation> </semantics> </math>

related synonym

damped Kuramoto-Sivashinsky equation

Term relations